

1.1

1.2

1.2.1

1.2.2

1.2.3

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.4

1.4.1

1.4.2

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.7

Table	of	Contents
Introduction

Getting	Started

Getting	Ready	for	Class

Getting	Started

GitHub	Flow

Project	1:	Caption	This

Branching	with	Git

Local	Git	Configs

Working	Locally

Collaborating	on	Code

Editing	on	GitHub

Merging	Pull	Requests

Local	History

Streamline	Workflow	with	Aliases

Project	2:	Merge	Conflicts

Defining	a	merge	conflict

Resolving	merge	Conflicts

Project	3:	GitHub	Games

Workflow	Review

Protected	Branches	&	CODEOWNERS

Git	Bisect

Reverting	Commits

Helpful	Git	Commands

Viewing	Local	Changes

Tags	&	Releases

Workflow	Discussion

Project	4:	Local	Repository

Create	a	Local	Repo

Fixing	Commit	Mistakes

Rewriting	History	with	Git	Reset

Cherry	Picking

Merge	Strategies

Appendix

2

3

Welcome	to	GitHub
Today	you	will	embark	on	an	exciting	new	adventure:	learning	how	to	use	Git	and	GitHub.

As	we	move	through	today's	materials,	please	keep	in	mind:	this	class	is	for	you!	Be	sure	to	follow	along,	try	the
activities,	and	ask	lots	of	questions!

License

The	prose,	course	text,	slide	layouts,	class	outlines,	diagrams,	HTML,	CSS,	and	Markdown	code	in	the	set	of
educational	materials	located	in	this	repository	are	licensed	as	CC	BY	4.0.	The	Octocat,	GitHub	logo	and	other
already-copyrighted	and	already-reserved	trademarks	and	images	are	not	covered	by	this	license.

For	more	information,	visit:	http://creativecommons.org/licenses/by/4.0/

Introduction

4

http://creativecommons.org/licenses/by/4.0/legalcode
http://creativecommons.org/licenses/by/4.0/

Getting	Ready	for	Class
While	you	are	waiting	for	class	to	begin,	please	take	a	few	minutes	to	set	up	your	local	work	environment.

Step	1:	Set	Up	Your	GitHub.com	Account

For	this	class,	we	will	use	a	public	account	on	GitHub.com.	We	do	this	for	a	few	reasons:

We	don't	want	you	to	"practice"	in	repositories	that	contain	real	code.
We	are	going	to	break	some	things	so	we	can	teach	you	how	to	fix	them.	(therefore,	refer	to	the	bullet	above)

You	can	set	up	your	free	account	by	following	these	steps:

1.	 Access	GitHub.com	and	click	Sign	up.
2.	 Choose	the	free	account.
3.	 You	will	receive	a	verification	email	at	the	address	provided.
4.	 Click	the	link	to	complete	the	verification	process.

If	you	already	have	an	account,	verify	that	you	can	visit	github.com	within	your	organization's	network.

GitHub	is	designed	to	run	on	the	current	versions	of	all	major	browsers.	In	particular,	if	you	use	Microsoft's	Internet
Explorer	(IE),	you	must	be	using	the	latest	version.	Take	a	look	at	our	list	of	supported	browsers.

Step	2:	Install	Git

Git	is	an	open	source	version	control	application.	You	will	need	Git	installed	for	this	class.

You	may	already	have	Git	installed	so	let's	check!	Open	Terminal	if	you	are	on	a	Mac,	or	PowerShell	if	you	are	on	a
Windows	machine,	and	type:

$	git	--version

You	should	see	something	like	this:

$	git	--version

git	version	2.11.0

Anything	over	2.0	will	work	for	this	class!

Downloading	and	Installing	Git

If	you	don't	already	have	Git	installed,	you	can	download	Git	at	www.git-scm.com.

If	you	need	additional	assistance	installing	Git,	you	can	find	more	information	in	the	ProGit	chapter	on	installing	Git:
	http://git-scm.com/book/en/v2/Getting-Started-Installing-Git	.

Where	is	Your	Shell?

Now	is	a	good	time	to	create	a	shortcut	to	the	command	line	application	you	will	want	to	use	with	Git:

If	you	are	working	on	Windows,	we	recommend		Git	Bash		which	is	installed	with	the	Git	package,	so	that	you	can
follow	along	with	the	facilitator	who	will	be	using	Bash.
If	you	are	working	on	a	Mac	or	other	Unix-based	system,	you	can	use	the	built-in	Terminal	application.

Getting	Ready	for	Class

5

https://help.github.com/articles/supported-browsers/

Step	3:	Try	cloning	with	HTTPS

Open	your	chosen	shell,	and	type:

git	clone	https://github.com/githubschool/scratch

If	the	clone	is	successful	you'll	see:

$	git	clone	https://github.com/githubschool/scratch

Cloning	into	'scratch'...

remote:	Counting	objects:	6,	done.

remote:	Compressing	objects:	100%	(2/2),	done.

remote:	Total	6	(delta	0),	reused	0	(delta	0),	pack-reused	0

Unpacking	objects:	100%	(6/6),	done.

If	your	clone	is	unsuccessful,	read	about	authenticating	with	GitHub	from	Git.	Please	note:	many	corporate	networks
restrict	SSH	traffic,	so	we	highly	recommend	using	HTTPS	and	verifying	the	clone	works	before	class.	Also,	if	you
have	two-factor	authentication	enabled	and	wish	to	use	HTTPS,	you	will	need	to	set	up	a	personal	access	token.

Proxy	configuration

If	your	organization	uses	a	proxy,	you	will	need	to	configure	the	proxy	settings	in	Git.	Open	Git	Bash	(on	Windows)	or
Terminal	(on	Mac	or	*nix)	and	complete	the	appropriate	steps	below:

If	your	proxy	does	not	require	authentication:

git	config	--global	http.proxy	https://YOUR.PROXY.SERVER:8080

Replace		YOUR.PROXY.SERVER		with	your	proxy's	URL.

If	your	proxy	does	require	authentication:

git	config	--global	http.proxy	https://YOUR_PROXY_USERNAME:YOUR_PROXY_PASSWORD@YOUR.PROXY.SERVER:8080

Replace		YOUR_PROXY_USERNAME		with	the	username	used	to	authenticate	into	your	proxy,		YOUR_PROXY_PASSWORD		with	the
password	used	to	authenticate	into	your	proxy,	and		YOUR.PROXY.SERVER		with	your	proxy's	URL.

Step	4:	Set	Up	Your	Text	Editor

For	this	class,	we	will	use	a	basic	text	editor	to	interact	with	our	code.	Let's	make	sure	you	have	one	installed	and
ready	to	work	from	the	command	line.

Pick	Your	Editor

You	can	use	almost	any	text	editor,	but	we	have	the	best	success	with	the	following:

Atom
Visual	Studio	Code
Notepad
Vi	or	Vim
Sublime
Notepad++
GitPad

Getting	Ready	for	Class

6

https://help.github.com/articles/set-up-git/#next-steps-authenticating-with-github-from-git
https://help.github.com/articles/https-cloning-errors/#provide-access-token-if-2fa-enabled
https://atom.io/
https://code.visualstudio.com

If	you	do	not	already	have	a	text	editor	installed,	go	ahead	and	download	and	install	one	of	the	above	editors	now!
You	can	also	configure	Atom	as	your	default	text	editor	for	Git	commands	using	the	instructions	at	help.github.com.

Your	Editor	on	the	Command	Line

After	you	have	installed	an	editor,	confirm	you	can	open	it	from	the	command	line.

If	installed	properly,	the	following	command	will	open	the	Atom	text	editor:

$	atom	.

If	you	are	working	on	a	Mac,	you	will	need	to	Install	Shell	Commands	from	the	Atom	menu,	this	happens	as	part
of	the	installation	process	for	Windows.

Exploring

Congratulations!	You	should	now	have	a	working	version	of	Git	and	a	text	editor	on	your	system.	If	you	still	have	some
time	before	class	begins,	here	are	some	interesting	resources	you	can	check	out:

github.com/explore	Explore	is	a	showcase	of	interesting	projects	in	the	GitHub	Universe.	See	something	you
want	to	re-visit?	Star	the	repository	to	make	it	easier	to	find	later.
lab.github.com	The	Learning	Lab	bot	will	guide	you	through	projects	and	provide	feedback	right	from	your	GitHub
repository,	helping	you	build	every	step	of	the	way.

Getting	Ready	for	Class

7

https://help.github.com/articles/associating-text-editors-with-git/
https://www.github.com/explore
https://lab.github.com

Getting	Started	With	Collaboration
We	will	start	by	introducing	you	to	Git,	GitHub,	and	the	collaboration	features	we	will	use	throughout	the	class.	Even	if
you	have	used	GitHub	in	the	past,	we	hope	this	information	will	provide	a	baseline	understanding	of	how	to	use	it	to
build	better	software!

What	is	GitHub?

GitHub	is	a	collaboration	platform	built	on	top	of	a	distributed	version	control	system	called	Git.	GitHub	is	focused	on
developers,	the	people	who	code	and	create	software.	Our	focus	is	also	the	people	who	partner	with	and	employ
developers,	who	are	encouraging	them	to	build	amazing	things.

We	do	all	we	can	to	help	unlock	the	creativity	of	developers	and	to	foster	a	community	of	developers	that	can	come
together—as	individuals	and	in	teams—to	create	the	future	of	software	and	make	a	difference	in	the	world.

GitHub	concentrates	on	three	things:

Building	a	technology	platform	that	is	like	no	other,	on	which	developers	can	create,	share	and	grow	the	best
code	possible
Nurturing	a	community	for	developers;	a	safe	and	collaborative	place	that	facilitates	sharing,	amplifies	creativity,
and	supports	the	principles	of	open	source
Providing	access,	opening	up	a	community	of	opportunity,	where	new	developers	can	be	born	and	where
experienced	developers	can	hone	their	skills	and	expand	their	knowledge

In	addition	to	being	a	place	to	host	and	share	your	Git	projects,	GitHub	provides	a	number	of	features	to	help	you	and
your	team	collaborate	more	effectively.	These	features	include:

Issues
Pull	Requests
Projects
Organizations	and	Teams

Getting	Started

8

The	GitHub	Ecosystem

Rather	than	force	you	into	a	"one	size	fits	all"	ecosystem,	GitHub	strives	to	be	the	place	that	brings	all	of	your	favorite
tools	together.	For	more	information	on	integrations,	check	out	https://github.com/integrations.

You	may	even	find	some	new,	indispensable	tools	to	help	with	continuous	integration,	dependency	management,
code	quality	and	much	more.

What	is	Git?

Git	is:

a	distributed	version	control	system	or	DVCS.

Getting	Started

9

https://github.com/integrations

free	and	open	source.
designed	to	handle	everything	from	small	to	very	large	projects	with	speed	and	efficiency.
easy	to	learn	and	has	a	tiny	footprint	with	lightning	fast	performance.

Git	features	cheap	local	branching,	convenient	staging	areas,	and	multiple	workflows.

As	we	begin	to	discuss	Git	(and	what	makes	it	special)	it	would	be	helpful	if	you	could	forget	everything	you	know
about	other	version	control	systems	(VCSs)	for	just	a	moment.	Git	stores	and	thinks	about	information	very	differently
than	other	VCSs.

We	will	learn	more	about	how	Git	stores	your	code	as	we	go	through	this	class,	but	the	first	thing	you	will	need	to
understand	is	how	Git	works	with	your	content.

Snapshots,	not	Deltas

One	of	the	first	ideas	you	will	need	understand	is	that	Git	does	not	store	your	information	as	series	of	changes.
Instead	Git	takes	a	snapshot	of	your	repository	at	a	given	point	in	time.	This	snapshot	is	called	a	commit.

Optimized	for	Local	Operations

Git	is	optimized	for	local	operation.	When	you	clone	a	copy	of	a	repository	to	your	local	machine,	you	receive	a	copy
of	the	entire	repository	and	its	history.	This	means	you	can	work	on	the	plane,	on	the	train,	or	anywhere	else	your
adventures	find	you!

Branches	are	Lightweight	and	Cheap

Branches	are	an	essential	concept	in	Git.

When	you	create	a	new	branch	in	Git,	you	are	actually	just	creating	a	pointer	that	corresponds	to	the	most	recent
commit	in	a	line	of	work.	Git	keeps	the	commits	for	each	branch	separate	until	you	explicitly	tell	it	to	merge	those
commits	into	the	main	line	of	work.

Git	is	Explicit

Which	brings	us	to	our	final	point	for	now;	Git	is	very	explicit.	It	does	not	do	anything	until	you	tell	it	to.	No	auto-saves
or	auto-syncing	with	the	remote,	Git	waits	for	you	to	tell	it	when	to	take	a	snapshot	and	when	to	send	that	snapshot	to
the	remote.

Exploring	a	GitHub	Repository

A	repository	is	the	most	basic	element	of	GitHub.	It	is	easiest	to	imagine	as	a	project's	folder.	However,	unlike	an
ordinary	folder	on	your	laptop,	a	GitHub	repository	offers	simple	yet	powerful	tools	for	collaborating	with	others.

A	repository	contains	all	of	the	project	files	(including	documentation),	and	stores	each	file's	revision	history.	Whether
you	are	just	curious	or	you	are	a	major	contributor,	knowing	your	way	around	a	repository	is	essential!

Getting	Started

10

User	Accounts	vs.	Organization	Accounts

There	are	two	account	types	in	GitHub,	user	accounts	and	organization	accounts.	While	there	are	many	differences	in
these	account	types,	one	of	the	more	notable	differences	is	how	you	handle	permissions.

User	Accounts

When	you	signed	up	for	GitHub,	you	were	automatically	given	a	user	account.	Permissions	for	a	user	account	are
simple,	you	add	people	as	collaborators	to	specific	repositories	to	give	them	full	read-write	access	to	the	project.

Organization	Accounts

Organization	accounts	provide	more	granular	control	over	repository	permissions.	In	an	organization	account	you
create	teams	of	people	and	then	give	those	teams	access	to	specific	repositories.	Permissions	can	be	assigned	at	the
team	level	(e.g,	read,	write,	or	admin).

Repository	Navigation

Code

The	code	view	is	where	you	will	find	the	files	included	in	the	repository.	These	files	may	contain	the	project	code,
documentation,	and	other	important	files.	We	also	call	this	view	the	root	of	the	project.	Any	changes	to	these	files	will
be	tracked	via	Git	version	control.

Issues

Issues	are	used	to	track	bugs	and	feature	requests.	Issues	can	be	assigned	to	specific	team	members	and	are
designed	to	encourage	discussion	and	collaboration.

Getting	Started

11

Pull	Requests

A	Pull	Request	represents	a	change,	such	as	adding,	modifying,	or	deleting	files,	which	the	author	would	like	to	make
to	the	repository.	Pull	Requests	help	you	write	better	software	by	facilitating	code	review	and	showing	the	status	of
any	automated	tests.

Projects

Projects	allow	you	to	visualize	your	work	with	Kanban	style	boards.	Projects	can	be	created	at	the	repository	or
organization	level.

Wiki

Wikis	in	GitHub	can	be	used	to	communicate	project	details,	display	user	documentation,	or	almost	anything	your
heart	desires.	And	of	course,	GitHub	helps	you	keep	track	of	the	edits	to	your	Wiki!

Pulse

Pulse	is	your	project's	dash	board.	It	contains	information	on	the	work	that	has	been	completed	and	the	work	in
progress.

Graphs

Graphs	provide	a	more	granular	view	into	the	repository	activity,	including	who	has	contributed,	when	the	work	is
being	done,	and	who	has	forked	the	repository.

README.md

The	README.md	is	a	special	file	that	we	recommend	all	repositories	contain.	GitHub	looks	for	this	file	and	helpfully
displays	it	below	the	repository.	The	README	should	explain	the	project	and	point	readers	to	helpful	information
within	the	project.

CONTRIBUTING.md

The	CONTRIBUTING.md	is	another	special	file	that	is	used	to	describe	the	process	for	collaborating	on	the
repository.	The	link	to	the	CONTRIBUTING.md	file	is	shown	when	a	user	attempts	to	create	a	new	issue	or	pull
request.

ISSUE_TEMPLATE.md

The	ISSUE_TEMPLATE.md	(and	its	twin	the	pull	request	template)	are	used	to	generate	templated	starter	text	for
your	project	issues.	Any	time	someone	opens	an	issue,	the	content	in	the	template	will	be	pre-populated	in	the	issue
body.

Using	GitHub	Issues

In	GitHub,	you	will	use	issues	to	record	and	discuss	ideas,	enhancements,	tasks,	and	bugs.	Issues	make
collaboration	easier	by:

Replacing	email	for	project	discussions,	ensuring	everyone	on	the	team	has	the	complete	story,	both	now	and	in
the	future.
Allowing	you	to	cross-link	to	related	issues	and	pull	requests.
Creating	a	single,	comprehensive	record	of	how	and	why	you	made	certain	decisions.

Getting	Started

12

Allowing	you	to	easily	pull	the	right	people	into	a	conversation	with	@	mentions	and	team	mentions.

include

Using	Markdown

GitHub	uses	a	syntax	called	Markdown	to	help	you	add	basic	text	formatting	to	Issues,	Pull	Requests,	and	files	with
the		.md		extension.

Commonly	Used	Markdown	Syntax

	#	Header	

The		#		indicates	a	Header.	#	=	Header	1,	##	=	Header	2,	etc.

	*	List	item	

A	single		*		or		-		followed	by	a	space	will	create	a	bulleted	list.

	Bold	item	

Two	asterix		**		on	either	side	of	a	string	will	make	that	text	bold.

	-	[]	Checklist	

A		-		followed	by	a	space	and		[]		will	create	a	handy	checklist	in	your	issue	or	pull	request.

	@mention	

When	you	@mention	someone	in	an	issue,	they	will	receive	a	notification	-	even	if	they	are	not	currently	subscribed	to
the	issue	or	watching	the	repository.

	#975	

A		#		followed	by	the	number	of	an	issue	or	pull	request	(without	a	space)	in	the	same	repository	will	create	a	cross-
link.

	:smiley:	

Tone	is	easily	lost	in	written	communication.	To	help,	GitHub	allows	you	to	drop	emoji	into	your	comments.	Simply
surround	the	emoji	id	with		:	.

Introduction	to	GitHub	Pages

GitHub	Pages	enable	you	to	host	free,	static	web	pages	directly	from	your	GitHub	repositories.	Several	of	the	projects
we	use	in	class	will	use	GitHub	Pages	as	the	deployment	strategy.	We	will	barely	scratch	the	surface	in	this	class,	but
there	are	a	few	things	you	need	to	know:

You	can	create	two	types	of	websites,	a	user/organization	site	or	a	project	site.	We	will	be	working	with	project
websites.
For	a	project	site,	GitHub	will	only	serve	the	content	on	a	specific	branch.	Depending	on	the	settings	for	your
repository,	GitHub	can	serve	your	site	from	a		master		or		gh-pages		branch,	or	a		/docs		folder	on	the		master	
branch.
The	rendered	sites	for	our	projects	will	appear	at		githubschool.github.io/repo-name	.

Getting	Started

13

Getting	Started

14

Understanding	the	GitHub	flow
In	this	section,	we	discuss	the	collaborative	workflow	enabled	by	GitHub.

The	Essential	GitHub	Workflow

The	GitHub	flow	is	a	lightweight	workflow	that	allows	you	to	experiment	with	new	ideas	safely,	without	fear	of
compromising	a	project.

Branching	is	a	key	concept	you	will	need	to	understand.	Everything	in	GitHub	lives	on	a	branch.	By	default,	the
"blessed"	or	"canonical"	version	of	your	project	lives	on	a	branch	called		master	.	This	branch	can	actually	be	named
anything,	as	we	will	see	in	a	few	minutes.

When	you	are	ready	to	experiment	with	a	new	feature	or	fix	an	issue,	you	create	a	new	branch	of	the	project.	The
branch	will	look	exactly	like		master		at	first,	but	any	changes	you	make	will	only	be	reflected	in	your	branch.	Such	a
new	branch	is	often	called	a	"feature"	branch.

As	you	make	changes	to	the	files	within	the	project,	you	will	commit	your	changes	to	the	feature	branch.

When	you	are	ready	to	start	a	discussion	about	your	changes,	you	will	open	a	pull	request.	A	pull	request	doesn't
need	to	be	a	perfect	work	of	art	-	it	is	meant	to	be	a	starting	point	that	will	be	further	refined	and	polished	through	the
efforts	of	the	project	team.

When	the	changes	contained	in	the	pull	request	are	approved,	the	feature	branch	is	merged	onto	the	master	branch.
In	the	next	section,	you	will	learn	how	to	put	this	GitHub	workflow	into	practice.

Exploring

Here	are	some	interesting	things	you	can	check	out	later:

guides.github.com/introduction/flow/	An	interactive	review	of	the	GitHub	Workflow.

GitHub	Flow

15

https://guides.github.com/introduction/flow/

Branching	with	Git
The	first	step	in	the	GitHub	Workflow	is	to	create	a	branch.	This	will	allow	us	to	experiment	with	new	features	without
accidentally	introducing	untested	changes	on	our	production	branch.

Branching	Defined

When	you	create	a	branch,	you	are	essentially	creating	an	identical	copy	of	the	project	at	that	point	in	time.	This	isn't
the	same	as	creating	a	physical	copy	on	disk.	In	the	background,	a	branch	is	just	a	pointer.

Let's	learn	how	you	can	create	a	new	branch.

include

Exploring

Here	are	some	interesting	things	you	can	check	out	later:

https://youtu.be/H5GJfcp3p4Q	A	GitHub	Training	Video	on	branching.

Branching	with	Git

16

https://youtu.be/H5GJfcp3p4Q

Local	Git	Configuration
In	this	section,	we	will	prepare	your	local	environment	to	work	with	Git.

Checking	Your	Git	Version

First,	let's	confirm	your	Git	Installation:

$	git	--version

$	git	version	2.11.0

If	you	do	not	see	a	git	version	listed	or	this	command	returns	an	error,	you	may	need	to	install	Git.

To	get	the	latest	version	of	Git,	visit	www.git-scm.com.

Git	Configuration	Levels

Git	allows	you	to	set	configuration	options	at	three	different	levels.

--system

These	are	system-wide	configurations.	They	apply	to	all	users	on	this	computer.

--global

Local	Git	Configs

17

https://git-scm.com/downloads
https://www.git-scm.com

These	are	the	user	level	configurations.	They	only	apply	to	your	user	account.

--local

These	are	the	repository	level	configurations.	They	only	apply	to	the	specific	repository	where	they	are	set.

The	default	value	for	git	config	is		--local	.

Viewing	Your	Configurations

If	you	would	like	to	see	which	config	settings	have	been	added	automatically,	you	can	type		git	config	--list	.	This
will	automatically	read	from	each	of	the	three	config	files	and	list	the	setting	they	contain.

$	git	config	--list

You	can	also	narrow	the	list	to	a	specific	configuration	level	by	including	it	before	the	list	option.

$	git	config	--global	--list

Configuring	Your	User	Name	and	Email

Git	uses	the	config	settings	for	your	user	name	and	email	address	to	generate	a	unique	fingerprint	for	each	of	the
commits	you	create.	You	can't	create	commits	without	these	settings:

$	git	config	--global	user.name	"First	Last"

$	git	config	--global	user.email	"you@email.com"

Git	Config	and	Your	Privacy

The	instructions	for	this	exercise	use	the		--global		flag	when	identifying	your		user.name		and		user.email	
configuration	settings.	If	you	are	currently	using	a	computer	without	a	private,	personal	account,	don't	apply	the		--
global		flag.	This	way,	the	settings	will	only	be	stored	in	our	assignment	repository.	If	you	work	in	another	repository
on	this	same	computer,	you	will	need	to	set	these	configuration	options	again.

For	example:

git	config	user.email	"you@email.com"

Your	name	and	email	address	will	automatically	be	stored	in	the	commits	you	make	with	Git.	If	you	would	like	your
email	to	remain	private,	GitHub	allows	you	to	generate	a	no-reply	email	address	for	your	account.	Click	the	Keep	my
email	address	private	in	the	Settings	>	Emails	section.	After	enabling	this	feature,	you	just	need	to	enter	the
automatically	generated		ID+username@users.noreply.github.com		when	configuring	your	email.

For	example:

git	config	--global	user.email	18249274+githubteacher@users.noreply.github.com

Configuring	autocrlf

$	//for	Windows	users

$	git	config	--global	core.autocrlf	true

$	//for	Mac	or	Linux	users

$	git	config	--global	core.autocrlf	input

Local	Git	Configs

18

https://github.com/settings/emails

Different	systems	handle	line	endings	and	line	breaks	differently.	If	you	open	a	file	created	on	another	system	and	do
not	have	this	config	option	set,	git	will	think	you	made	changes	to	the	file	based	on	the	way	your	system	handles	this
type	of	file.

Memory	Tip:		autocrlf		stands	for	auto	carriage	return	line	feed.

Local	Git	Configs

19

Working	Locally	with	Git
Using	the	command	line,	you	can	easily	integrate	Git	into	your	current	workflow.

Creating	a	Local	Copy	of	the	repo

Before	we	can	work	locally,	we	will	need	to	create	a	clone	of	the	repository.

When	you	clone	a	repository	you	are	creating	a	copy	of	everything	in	that	repository,	including	its	history.	This	is	one
of	the	benefits	of	a	DVCS	like	git	-	rather	than	being	required	to	query	a	slow	centralized	server	to	review	the	commit
history,	queries	are	run	locally	and	are	lightning	fast.

Let's	go	ahead	and	clone	the	class	repository	to	your	local	desktop.

1.	 Navigate	to	the	Code	tab	of	the	class	repository	on	GitHub.
2.	 Click	Clone	or	download.
3.	 Copy	the	clone	URL	to	your	clipboard.
4.	 Open	your	command	line	application.
5.	 Retrieve	a	full	copy	of	the	repository	from	GitHub:		git	clone	<CLONE-URL>	
6.	 Once	the	clone	is	complete,	cd	into	the	new	directory	created	by	the	clone	operation:		cd	<REPOSITORY-NAME>	

Our	Favorite	Git	command:		git	status	

$	git	status

On	branch	master

Your	branch	is	up-to-date	with	'origin/master'.

nothing	to	commit,	working	tree	clean

	git	status		is	a	command	you	will	use	often	to	verify	the	current	state	of	your	repository	and	the	files	it	contains.
Right	now,	we	can	see	that	we	are	on	branch	master,	everything	is	up	to	date	with	origin/master	and	our	working	tree
is	clean.

Using	Branches	locally

$	git	branch

Working	Locally

20

If	you	type		git	branch		you	will	see	a	list	of	local	branches.

$	git	branch	--all

$	git	branch	-a

If	you	want	to	see	all	of	the	branches,	including	the	read-only	copies	of	your	remote	branches,	you	can	add	the		--all	
option	or	just		-a	.

The		--all		and		-a		are	actually	synonyms	for	the	branch	command.	Git	often	provides	a	verbose	and	a	short
option.

Switching	Branches

$	git	checkout	<BRANCH-NAME>

To	checkout	the	branch	you	created	online,	type	git	checkout	and	the	name	of	your	branch.	Git	will	provide	a	message
that	says	you	have	been	switched	to	the	branch	and	it	has	been	set	up	to	track	the	same	remote	branch	from	origin.

You	do	not	need	to	type		remotes/origin		in	front	of	the	branch	-	only	the	branch	name.	Typing		remotes/origin	
in	front	of	the	branch	name	will	put	you	in	a	detached	HEAD	state.	We	will	learn	more	about	that	later,	but	for
now	just	remember	this	is	not	a	state	we	want	to	be	in.

include

The	Two	Stage	Commit

After	you	have	created	your	file,	it	is	time	to	create	your	first	snapshot	of	the	repository.	When	working	from	the
command	line,	you	will	need	to	be	familiar	with	the	idea	of	the	two	stage	commit.

When	you	work	locally,	your	files	exist	in	one	of	four	states.	They	are	either	untracked,	modified,	staged,	or
committed.

An	untracked	file	is	a	new	file	that	has	never	been	committed.

Git	tracks	these	files,	and	keeps	track	of	your	history	by	organizing	your	files	and	changes	in	three	working	trees.
They	are	Working,	Staging	(also	called	Index),	and	History.	When	we	are	actively	making	changes	to	files,	this	is
happening	in	the	working	tree.

Working	Locally

21

To	add	these	files	to	version	control,	you	will	create	a	collection	of	files	that	represent	a	discrete	unit	of	work.	We	build
this	unit	in	the	staging	area.

When	we	are	satisfied	with	the	unit	of	work	we	have	assembled,	we	will	take	a	snapshot	of	everything	in	the	staging
area.	This	is	called	a	commit.

Working	Locally

22

In	order	to	make	a	file	part	of	the	version	controlled	directory	we	will	first	do	a	git	add	and	then	we	will	do	a	git	commit.
Let's	do	it	now.

1.	 First,	let's	check	the	status	of	our	working	tree:		git	status	
2.	 Move	the	file	from	the	working	tree	to	the	staging	area:		git	add	my-file.md	
3.	 Let's	see	what	happened:		git	status	
4.	 Now	let's	take	our	first	snapshot:		git	commit	
5.	 Git	will	open	your	default	text	editor	to	request	a	commit	message.	Simply	type	your	message	on	the	top	line	of

the	file.	Any	line	without	a	#	will	be	included	in	the	commit	message.
6.	 Save	and	close	the	commit	message
7.	 Let's	take	another	look	at	our	repository	status:		git	status	

Good	commit	messages	should:

Be	short.	~50	characters	is	ideal.
Describe	the	change	introduced	by	the	commit.
Tell	the	story	of	how	your	project	has	evolved.

Working	Locally

23

Collaborating	on	Your	Code
Now	that	you	have	made	some	changes	in	the	project	locally,	let's	learn	how	to	push	your	changes	back	to	the	shared
class	repository	for	collaboration.

Pushing	Your	Changes	to	GitHub

In	this	case,	our	remote	is	GitHub.com,	but	this	could	also	be	your	company's	internal	instance	of	GitHub	Enterprise.

To	push	your	changes	to	GitHub,	you	will	use	the	command:

$	git	push

When	you	push,	you	will	be	asked	to	enter	your	GitHub	username	and	password.	If	you	would	like	Git	to
remember	your	credentials	on	this	computer,	you	can	cache	your	credentials	using:

Windows:		git	config	--global	credential.helper	wincred	
Mac:		git	config	--global	credential.helper	osxkeychain	

include

Exploring	a	Pull	Request

Now	that	we	have	created	a	Pull	Request,	let's	explore	a	few	of	the	features	that	make	Pull	Requests	the	center	of
collaboration:

Conversation	view

Collaborating	on	Code

24

Similar	to	the	discussion	thread	on	an	Issue,	a	Pull	Request	contains	a	discussion	about	the	changes	being	made	to
the	repository.	This	discussion	is	found	in	the	Conversation	tab	and	also	includes	a	record	of	all	of	the	commits	made
on	the	branch	as	well	as	assignments,	labels	and	reviews	that	have	been	applied	to	the	pull	request.

Commits	view

The	commits	view	contains	more	detailed	information	about	who	has	made	changes	to	the	files.	Clicking	each	commit
ID	will	allow	you	to	see	the	changes	applied	in	that	specific	commit.

Files	changed	view

The	Files	changed	view	allows	you	to	see	cumulative	effect	of	all	the	changes	made	on	the	branch.	We	call	this	the
	diff	.	Our	diff	isn't	very	interesting	yet,	but	as	we	make	changes	your	diff	will	become	very	colorful.

Code	Review	in	Pull	Requests

To	provide	feedback	on	proposed	changes,	GitHub	offers	three	levels	of	commenting:

General	Conversation

You	can	provide	general	comments	on	the	Pull	Request	within	the	Conversation	tab.

Line	Comments

In	the	files	changed	view,	you	can	hover	over	a	line	to	see	a	blue		+		icon.	Clicking	this	icon	will	allow	you	to	enter	a
comment	on	a	specific	line.	These	line	level	comments	are	a	great	way	to	give	additional	context	on	recommended
changes.	They	will	also	be	displayed	in	the	conversation	view.

Review

When	you	are	making	line	comments,	you	can	also	choose	to	Start	a	Review.	When	you	create	a	review,	you	can
group	many	line	comments	together	with	a	general	message:	Comments,	Approve,	or	Request	Changes.	Reviews
have	special	power	in	GitHub	when	used	in	conjunction	with	protected	branches.

Activity:	Code	Review

One	of	the	best	ways	to	ensure	code	quality	is	to	make	peer	reviews	a	part	of	every	Pull	Request.	Let's	review	your
partner's	code	now:

1.	 Click	the	Pull	Request	tab.
2.	 Use	the	Author	drop	down	to	locate	your	partner's	pull	request.
3.	 Click	the	Files	Changed	tab.
4.	 Hover	over	a	single	line	in	the	file	to	see	the	blue	+.	Click	the	+	to	add	a	line	comment.
5.	 Comment	on	the	line	and	click	Start	a	review.
6.	 Add	additional	line	comments	to	the	pull	request.
7.	 Click	Review	changes	in	the	top	right	corner.
8.	 Choose	whether	to	Approve	or	Request	changes
9.	 Enter	a	general	comment	for	the	review.
10.	 Click	Submit	review
11.	 Click	the	Conversation	view	to	check	out	your	completed	review.

Collaborating	on	Code

25

Collaborating	on	Code

26

Editing	Files	on	GitHub
Since	you	created	the	pull	request,	you	will	be	notified	when	someone	adds	a	comment	or	a	review.	Sometimes,	the
reviewer	will	ask	you	to	make	a	change	to	the	file	you	just	created.	Let's	see	how	GitHub	makes	this	easy.

Editing	a	File	on	GitHub

To	edit	a	pull	request	file,	you	will	need	to	access	the	Files	Changed	view.

1.	 Click	the	pencil	icon	in	the	top	right	corner	of	the	diff	to	edit	the	file	using	the	GitHub	file	editor.
2.	 Make	changes	to	the	file	based	on	the	comments	from	your	reviewer	or	your	personal	perspective.

Committing	Changes	on	GitHub

Once	you	have	made	some	changes	to	your	file,	you	will	need	to	create	a	new	commit.

1.	 Scroll	to	the	bottom	of	the	page	to	find	the	Commit	changes	dialog	box.
2.	 Type	a	Commit	message.
3.	 Choose	the	option	to	Commit	directly	to	your	branch.
4.	 Click	Commit	changes.

Activity:	Editing	Files	in	Pull	Requests

Go	back	to	your	Pull	Request	and	make	the	edits	requested	by	your	collaborators.

Editing	on	GitHub

27

Merging	Pull	Requests
Now	that	you	have	made	the	requested	changes,	your	pull	request	should	be	ready	to	merge.

Merge	Explained

When	you	merge	your	branch,	you	are	taking	the	content	and	history	from	your	feature	branch	and	adding	it	to	the
content	and	history	of	the		master		branch.

Many	project	teams	have	established	rules	about	who	should	merge	a	pull	request.

Some	say	it	should	be	the	person	who	created	the	pull	request	since	they	will	be	the	ones	to	deal	with	any	issues
resulting	from	the	merge.
Others	say	it	should	be	a	single	person	within	the	project	team	to	ensure	consistency.
Still	others	say	it	can	be	anyone	other	than	the	person	who	created	the	pull	request	to	ensure	at	least	one	review
has	taken	place.

This	is	a	discussion	you	should	have	with	the	other	members	of	your	team.

Merging	Your	Pull	Request

Let's	take	a	look	at	how	you	can	merge	the	pull	request.

1.	 Navigate	to	your	Pull	Request	(HINT:	Use	the	Author	or	Assignee	drop	downs	to	find	your	Pull	Request	quickly)
2.	 Click	Conversation
3.	 Scroll	to	the	bottom	of	the	Pull	Request	and	click	the	Merge	pull	request	button
4.	 Click	Confirm	merge
5.	 Click	Delete	branch
6.	 Click	Issues	and	confirm	your	original	issue	has	been	closed

GitHub	offers	three	different	merge	strategies	for	Pull	Requests:

Create	a	merge	commit:	This	is	the	traditional	option	that	will	perform	a	standard	recursive	merge.	A	new
commit	will	be	added	that	shows	the	point	when	the	two	branches	were	merged	together.
Squash	and	merge:	This	option	will	take	all	of	the	commits	on	your	branch	and	compress	them	into	a
single	commit.	The	commit	messages	will	be	preserved	in	the	extended	commit	message	for	the	commit,
but	the	individual	commits	will	be	lost.
Rebase	and	merge:	This	option	will	take	all	of	the	commits	and	replay	them	as	if	they	just	happened.	This
allows	GitHub	to	perform	a	fast	forward	merge	(and	avoids	the	addition	of	the	merge	commit).

Updating	Your	Local	Repository

Merging	Pull	Requests

28

When	you	merged	your	Pull	Request,	you	deleted	the	branch	on	GitHub,	but	this	will	not	automatically	update	your
local	copy	of	the	repository.	Let's	go	back	to	our	command	line	application	and	get	everything	in	sync.

First,	we	need	to	get	the	changes	we	made	on	GitHub	into	our	local	copy	of	the	repository:

1.	 Start	by	switching	back	to	your	default	branch:		git	checkout	master	
2.	 Retrieve	all	of	the	changes	from	GitHub:		git	pull	

	git	pull		is	a	combination	command	that	retrieves	all	of	the	changes	from	GitHub	and	then	updates	the	branch	you
are	currently	on	to	include	the	changes	from	the	remote.	The	two	separate	commands	being	run	are		git	fetch		and
	git	merge	

Cleaning	Up	the	Unneeded	Branches

If	you	type		git	branch	--all		you	will	probably	see	that,	even	though	you	deleted	your	branch	on	the	remote,	it	is	still
listed	in	your	local	copy	of	the	repository,	both	as	a	local	branch	and	as	a	read-only	remote	tracking	branch.	Let's	get
rid	of	those	extra	branches.

1.	 Take	a	look	at	your	local	branches:		git	branch	--all	
2.	 Let's	see	which	branches	are	safe	to	delete:		git	branch	--merged	
3.	 Delete	the	local	branch:		git	branch	-d	<branch-name>	
4.	 Take	another	look	at	the	list:		git	branch	--all	
5.	 Your	local	branch	is	gone	but	the	remote	tracking	branch	is	still	there.	Delete	the	remote	tracking	branch:		git

pull	--prune	

Adding	the		--merged		option	to	the		git	branch		command	allows	you	to	see	which	branches	do	not	contain
unique	work	when	compared	to	the	checked	out	branch.	In	this	case,	since	we	are	checked	out	to	master,	we
will	use	this	command	to	ensure	all	of	the	changes	on	our	feature	branch	have	been	merged	to	production
before	we	delete	the	branch.

If	you	would	like	pruning	of	the	remote	tracking	branches	to	be	set	as	your	default	behavior	when	you	pull,	you	can
use	the	following	configuration	option:		git	config	--global	fetch.prune	true	.

Merging	Pull	Requests

29

Viewing	Local	Project	History
In	this	section,	you	will	discover	commands	for	viewing	the	history	of	your	project.

Using	Git	Log

When	you	clone	a	repository,	you	receive	the	history	of	all	of	the	commits	made	in	that	repository.	The	log	command
allows	us	to	view	that	history	on	our	local	machine.

Let's	take	a	look	at	some	of	the	option	switches	you	can	use	to	customize	your	view	of	the	project	history.	You	can
find	these	options,	and	many	more,	on	git-scm.com.	(Note:		--graph		is	default	on	most	Git	Bash	for	Windows
terminals.)

$	git	log

$	git	log	--oneline

$	git	log	--oneline	--graph

$	git	log	--oneline	--graph	--decorate

$	git	log	--oneline	--graph	--decorate	--all

$	git	log	--stat

$	git	log	--patch

Use	the	up	and	down	arrows	or	press	enter	to	view	additional	log	entries.	Type		q		to	quit	viewing	the	log	and
return	to	the	command	prompt.

Local	History

30

https://git-scm.com/docs/git-log

Streamlining	Your	Workflow	with	Aliases
So	far	we	have	learned	quite	a	few	commands.	Some,	like	the	log	commands,	can	be	long	and	tedious	to	type.	In	this
section,	you	will	learn	how	to	create	custom	shortcuts	for	Git	commands.

Creating	Custom	Aliases

An	alias	allows	you	to	type	a	shortened	command	to	represent	a	long	string	on	the	command	line.

For	example,	let's	create	an	alias	for	the	log	command	we	learned	earlier.

Original	Command

$	git	log	--oneline	--graph	--decorate	--all

Creating	the	Alias

$	git	config	--global	alias.lol	"log	--oneline	--graph	--decorate	--all"

Using	the	Alias

$	git	lol

Explore	Other	Helpful	Aliases

Check	out	these	resources	for	a	list	of	common	aliases:

git-scm.com/book/en/v2/Git-Basics-Git-Aliases	A	helpful	overview	of	some	of	the	most	common	git	aliases.

We	also	encourage	you	to	read	through	these	three	blog	posts	by	GitHub	developer	Phil	Hack.	His	tips	are	referenced
throughout	the	manual.

GitHub	Flow	Aliases
Git	Migrate
Git	Alias	Open	URL

Pro	Tip	#	1:	To	edit	aliases	by	hand,	you	can	open	the	gitconfig	file	with	your	default	editor.

git	config	--global	alias.ec	"config	--global	-e"

Pro	Tip	#	2:	To	checkout	to	another	branch,	you	can	make	a	quick	shortcut.

git	config	--global	alias.ch	"checkout"

Pro	Tip	#	3:	To	checkout	to	a	brand	new	branch,	you	can	easily	extend	your	existing	shortcut.

git	config	--global	alias.cob	"checkout	-b"

Pro	Tip	#	4:	You	can	create	aliases	that	only	call	one	command.

git	config	--global	alias.s	"status	-s"

Streamline	Workflow	with	Aliases

31

https://git-scm.com/book/en/v2/Git-Basics-Git-Aliases
http://haacked.com/archive/2014/07/28/github-flow-aliases/
http://haacked.com/archive/2015/06/29/git-migrate/
http://haacked.com/archive/2017/01/04/git-alias-open-url/

Pro	Tip	#	5:	Clean	up	branches	quickly	and	easily.

$	git	config	alias.dlb	'!git	checkout	<DEFAULT-BRANCH>	&&	git	pull	--prune	&&	git	branch	--merged	|	grep	-v	"*

"	|	xargs	-n	1	git	branch	-d'

Streamline	Workflow	with	Aliases

32

What	is	a	merge	conflict?
When	you	work	with	a	team	(and	even	sometimes	when	you	are	working	alone)	you	will	occasionally	create	merge
conflicts.	At	first,	merge	conflicts	can	be	intimidating,	but	resolving	them	is	actually	quite	easy.	In	this	section	you	will
learn	how!

These	exercises	will	focus	on	the	technical	"how".	In	real	merge	conflicts,	it's	important	to	know	who	to	ask	in	case
you	aren't	sure	how	to	resolve	the	conflict	on	your	own.	Usually	it's	a	good	idea	to	ask	the	person	who	made	the
conflicting	changes,	or	someone	who	is	a	CODEOWNER	on	the	file.

Local	Merge	Conflicts

Merge	conflicts	are	a	natural	and	minor	side	effect	of	distributed	version	control.	They	only	happen	under	very	specific
circumstances.

Changes	to	the	same	"hunk"	of	the	same	file
Two	different	branches
Changes	on	both	branches	happened	since	the	branches	have	diverged

Defining	a	merge	conflict

33

Resolving	a	Merge	Conflict

Let's	try	to	create	a	merge	conflict,	and	fix	it	together.	You	and	a	partner	will	each	create	separate	branches,	create	a
file	with	the	same	name,	and	then	try	to	merge.	The	first	will	merge	cleanly,	the	second	will	have	a	merge	conflict.
Work	together	to	resolve	the	merge	conflict.

1.	 In	our	class	repository,	create	the	branch	that	you	will	be	working	on	and	name	it	something	memorable	like
	USERNAME-conflict	.

2.	 Choose	a	file	that	both	you	and	your	partner	will	edit.	(One	of	your	files	from	earlier	would	work	well.)	On	your
branch,	edit	that	file.	The	file	name	must	be	the	same	file	name	that	your	partner	uses.	Make	sure	the	content
inside	of	the	file	is	different,	and	that	neither	file	is	empty.

3.	 Create	a	pull	request	in	the	class	repository	with		base:	master		and		compare:	USERNAME-conflict	.
4.	 You	will	see	that	the	first	pull	request	can	merge	well.
5.	 When	you	see	the	merge	conflict	in	the	second	pull	request,	work	together	to	resolve	the	merge	conflict.

i.	 Working	locally,	merge		master		into	the	feature	branch.
ii.	 When	you	see	there's	a	conflict,	that's	OK!	The	files	that	have	conflicts	are	listed	under		Unmerged	Paths	.

Type		git	status		to	verify	which	file	has	the	conflict.
iii.	 Open	that	file	in	your	text	editor,	and	look	for	the	merge	conflict	markers.	(<<<<<<<	,		=======	,		>>>>>>>)
iv.	 Both	branches'	versions	of	code	are	present	-	pick	which	one	you	want	to	keep,	and	save	the	changes.
v.	 Add	and	commit	the	saved	changes	to	resolve	the	merge	conflict.
vi.	 Push	the	feature	branch	up	to	the	remote,	and	see	the	resolution	in	the	pull	request.

6.	 Merge	the	pull	request.

What	is	a	merge	message?	In	this	example,	we	are	doing	a	recursive	merge.	A	recursive	merge	creates	a	new
commit	that	permanently	records	the	point	in	time	when	these	two	branches	were	merged	together.	We	will	talk
more	about	Git's	merge	strategies	a	little	later.

Resolving	merge	Conflicts

34

Project:	GitHub	Games
In	this	section,	we	will	work	on	a	project	repository	called		github-games	.

A		github-games		repository	has	been	created	for	you	in	the	githubschool	organization.	You	can	access	the	repository
at		https://github.com/githubschool/github-games-USERNAME	.

If	you're	using	the	Fork	and	Pull	Workflow,	don't	forget	to	look	in	the	appendix	for	a	more	thorough	explanation.

Workflow	Review:	Updating	the	README.md

Now	you	will	practice	the	GitHub	Flow	from	beginning	to	end	by	updating	the	link	in	the	README	to	point	to	your	fork
of	the	repository.

Remember,	your	copy	of	the	website	will	be	rendered	at		https://githubschool.github.io/github-games-
USERNAME	.

This	link	also	appears	in	the	repository	description.	It	is	a	good	idea	to	edit	the	website	URL	in	the	description
so	you	can	easily	access	your	game.

If	you	click	the	link,	you	will	see	the	text	in	the		README.md	.	We	have	intentionally	broken	this	repository	so	we
can	fix	it	together.

Since	this	is	a	review,	we	have	written	these	steps	at	a	high	level.	As	we	complete	the	review,	we	will	show	you	a	few
shortcuts	for	the	commands	you	learned	in	the	previous	activity:

1.	 Clone	your	copy	of	the	repository:		git	clone	https://github.com/githubschool/github-games-USERNAME.git	
2.	 Create	a	new	branch	called		readme-update	:		git	checkout	-b	readme-update	
3.	 Edit	the	URL	in	the	README.md.
4.	 Commit	the	changes	to	your	branch.
5.	 Push	your	branch	to	GitHub:		git	push	-u	origin	readme-update	
6.	 Create	a	Pull	Request	in	your	repository	(base:		master	,	compare:		readme-update)
7.	 Merge	your	Pull	Request.
8.	 Delete	the	branch	on	GitHub.
9.	 Update	your	local	copy	of	the	repository:		git	pull	--prune	

	git	checkout	-b	readme-update		is	a	shortcut	command	that	allows	you	to	combine	the	creation	of	the	branch	(git
branch	readme-update)	and	checking	out	to	that	branch	(git	checkout	readme-update).	The		-b		tells	Git	to	create	a
new	branch.

	git	push	-u	origin	readme-update		is	the	slightly	longer	version	of	the	push	command	that	should	be	used	when
you	push	a	new	branch	for	the	first	time.

The		-u		is	the	short	version	of	the	option		--set-upstream	.	This	option	tells	Git	to	create	a	relationship	between
our	local	branch	and	a	remote	tracking	branch	of	the	same	name.\

You	only	need	to	use	this	long	command	the	first	time	you	push	a	new	branch.	After	that,	you	can	simply	use
	git	push	.

	git	config	--global	alias.bclean	"!f()	{	branches=$(git	branch	--merged	${1-master}	|	grep	-v	"	${1-master}$");	[-

z	\"$branches\"]	||	git	branch	-d	$branches;	};	f"		could	be	helpful	here.	Take	a	peek	in	the	appendix	to	learn
how!

Workflow	Review

35

Workflow	Review

36

Protected	Branches	&	CODEOWNERS
In	some	workflows,	you	will	want	to	protect	critical	branches	to	ensure	the	code	being	merged	to	those	branches	has
passed	the	required	checks	and	received	appropriate	peer	review.	There	are	several	methods	for	this,	including
Protected	Branches	and	Code	Owners.

Protected	Branches

Repository	maintainers	can	prevent	merges	to	specific	branches	that	have	not	met	pre-defined	criteria.	This	criteria
can	include	peer	reviews,	tests	run	by	integrations	such	as	a	Continuous	Integration	services	or	code	quality,	or	until	a
specific	code	owner	has	reviewed	and	approved	changes.

Let's	enable	protected	branches:

1.	 Select	the	Settings	tab.
2.	 Select	Branches	from	the	menu	on	the	left	side	of	the	screen.
3.	 Click	the	Add	rule	button	next	to	Branch	protection	rules.
4.	 In	the	Apply	rule	to	textbox	type	the	name	of	the	branch	you	would	like	to	protect,	for	example,		master	.
5.	 Click	the	Create	button.

Without	checking	any	other	options,	basic	branch	protection	prevents	force-pushes	and	prevents	it	from	being
deleted.	To	learn	more	about	the	options	available,	check	out	the	documentation	for	this	feature.

Pro	tip:	You	can	use	wildcards	(*	,		?)	and	regular	expressions	to	make	a	branch	protection	rule	apply	to
multiple	branches.	Check	out	the	branch	protection	documentation	for	more	information	on	how	wildcards	and
regular	expression	matching	work.

CODEOWNERS

Repository	maintainers	can	define	exactly	which	people	and	teams	need	to	review	sets	of	changes	by	creating	a
CODEOWNERS	file.	For	example,	you	could	use	CODEOWNERS	to	ensure:

your	team's	Javascript	expert	reviews	all	files	with	a		.js		extension
your	technical	documentation	team	reviews	all	changes	in	the		docs/		folder
your	security	team	reviews	any	new	dependencies	listed	in	the		package.json		file

Let's	create	a	CODEOWNERS	file:

1.	 Go	out	to	the	Code	tab	of	your	repository.
2.	 Click	the	Create	new	file	button.
3.	 In	the	Name	your	file...	textbox	enter		CODEOWNERS		(no	extension	necessary).	You	can	add	this	to	a		.github/	

directory	if	desired	by	entering		.github/CODEOWNERS	.
4.	 On	the	first	line,	type		*	@YOUR_USERNAME	

This	means	that	you	will	be	the	default	owner	for	everything	in	the	repo,	unless	a	later	match	takes
preference.

5.	 On	the	next	line,	type		*.js	@GITHUBTEACHER	
Order	is	important.	The	last	matching	pattern	for	a	given	change	takes	precedence.

6.	 Scroll	down,	and	type	a	commit	message	into	the	Commit	new	file	dialog	box.
7.	 Click	the	Commit	new	file	button	to	save	your	changes.
8.	 Now	that	you	have	created	a	CODEOWNERS	file,	go	back	to	your	branch	protection	settings	and	click	the	Edit

button	next	to		master	.
9.	 Under	Rule	settings,	select	the	option	to	Require	pull	request	reviews	before	merging	and	Require	review

from	Code	Owners.	Remember	to	click	Save	changes.

Protected	Branches	&	CODEOWNERS

37

https://help.github.com/articles/defining-the-mergeability-of-pull-requests/
https://help.github.com/en/articles/configuring-protected-branches

For	more	information	on	how	to	format	the	CODEOWNERS	file,	check	out	the	documentation

Protected	Branches	&	CODEOWNERS

38

https://help.github.com/articles/about-codeowners/

Searching	for	Events	in	Your	Code
In	this	section,	we	will	learn	how	we	can	use		git	bisect		to	find	the	commit	that	introduced	a	bug	into	our	repository.

What	is		git	bisect	?

Using	a	binary	search,		git	bisect		can	help	us	detect	specific	events	in	our	code.	For	example,	you	could	use	bisect
to	locate	the	commit	where:

a	bug	was	introduced.
a	new	feature	was	added.
a	benchmark’s	performance	improved.

How	it	works

	git	bisect		works	by	cutting	the	history	between	two	points	in	half	and	then	checking	you	out	to	that	commit.	You
then	check	whether	the	bug/feature	exists	at	that	point	and	tell	Git	the	result.	From	there,	Git	will	do	another	division,
etc	until	you	have	located	the	desired	commit.

When	you	are	doing	a	bisect,	you	are	essentially	in	a	detached	head	state.	It	is	important	to	remember	to	end
the	bisect	with		git	bisect	reset		before	attempting	to	perform	other	operations	with	Git.

Finding	the	Bug	in	Our	Project

The	Long	Way

1.	 Initiate	the	binary	search:		git	bisect	start	.
2.	 Specify	the	commit	where	you	noticed	the	code	was	broken:		git	bisect	bad	<SHA>	.
3.	 Specify	the	commit	where	you	knew	things	were	working:		git	bisect	good	<SHA>	.
4.	 Bisect	will	check	you	out	to	the	midpoint	between	good	and	bad.
5.	 Run	a	test	to	see	if	the	game	would	work	at	this	point.	Our	test	is	to	use		ls		to	see	if	an		index.html		file	exists.

Git	Bisect

39

6.	 If	the	game	is	still	broken	(there	is	no		index.html		file),	type:		git	bisect	bad	.
7.	 If	the	game	works	(and	there	is	an		index.html		file),	type:		git	bisect	good	.
8.	 Git	will	bisect	again	and	wait	for	you	to	test.	This	will	happen	until	Git	has	enough	information	to	pinpoint	the	first

bad	commit.
9.	 When	Git	has	detected	the	error,	it	will	provide	a	message	that		SHA	is	the	first	bad	commit.	
10.	 Exit	the	bisect	process:		git	bisect	reset	.

The	Short	Way

Bisect	can	also	run	the	tests	on	your	code	automatically.	Let's	try	it	again	using	a	shortcut	command	and	a	test:

1.	 	git	bisect	start	<bad-SHA>	<good-SHA>	
2.	 	git	bisect	run	ls	index.html	
3.	 	git	bisect	reset	

Git	Bisect

40

Reverting	Commits
In	this	section,	we	will	learn	about	commands	that	re-write	history	and	understand	when	you	should	or	shouldn't	use
them.

How	Commits	Are	Made

Every	commit	in	Git	is	a	unique	snapshot	of	the	project	at	that	point	in	time.	It	contains	the	following	information:

Pointers	to	the	current	objects	in	the	repository
Commit	author	and	email	(from	your	config	settings)
Commit	date	and	time
Commit	message

Each	commit	also	contains	the	commit	ID	of	its	parent	commit.

Image	source:	ProGit	v2	by	Scott	Chacon

Safe	Operations

Git's	data	structure	gives	it	integrity	but	its	distributed	nature	also	requires	us	to	be	aware	of	how	certain	operations
will	impact	the	commits	that	have	already	been	shared.

Reverting	Commits

41

If	an	operation	will	change	a	commit	ID	that	has	been	pushed	to	the	remote	(also	known	as	a	public	commit),	we	must
be	careful	in	choosing	the	operations	to	perform.

Guidelines	for	Common	Commands

Command Cautions

	revert	 Generally	safe	since	it	creates	a	new	commit.

	commit	--amend	 Only	use	on	local	commits.

	reset	 Only	use	on	local	commits.

	cherry-pick	 Only	use	on	local	commits.

	rebase	 Only	use	on	local	commits.

Reverting	Commits

To	get	your	game	working,	you	will	need	to	reverse	the	commit	that	incorrectly	renames		index.html	.

Warning:	Before	you	reverse	the	commit,	it	is	a	good	idea	to	make	sure	you	will	not	be	inadvertently	reversing
other	changes	that	were	lumped	into	the	same	commit.	To	see	what	was	changed	in	the	commit,	use		git	show
SHA	.

1.	 Initialize	the	revert:		git	revert	<SHA>	
2.	 Type	a	commit	message.
3.	 Push	your	changes	to	GitHub.

Reverting	Commits

42

Helpful	Git	Commands
In	this	section,	we	will	explore	some	helpful	Git	commands.

Moving	and	Renaming	Files	with	Git

1.	 Create	a	new	branch	named		slow-down	.
2.	 On	line	9	of	the	index.html	file,	change	the	background	url	to	(images/texture.jpg).
3.	 On	line	78,	change	the	timing	for	the	game	to	speed	it	up	or	slow	it	down.
4.	 Save	your	changes.
5.	 See	what	git	is	tracking:		git	status	
6.	 Create	a	new,	empty	directory:		mkdir	images	
7.	 Move	the	texture	file	into	the	directory	with	git:		git	mv	texture.jpg	images/texture.jpg	

Staging	Hunks	of	Changes

Crafting	atomic	commits	is	an	important	part	of	creating	a	readable	and	informative	history	of	the	project.

1.	 See	what	git	is	tracking:		git	status	.
2.	 Move	some	parts	of	some	files	to	the	staging	area	with	the		--patch		flag:		git	add	-p	.
3.	 Stage	the	hunk	related	to	the	image	move:		y	
4.	 Leave	the	hunk	related	to	the	speed	change	in	the	working	area:		n	

Wondering	what	all	of	those	other	options	are	for	the	hunks?	Use	the		?		to	see	a	list	of	options	above	the	hunk.

	git	config	--global	alias.cm	"!git	add	-A	&&	git	commit	-m"		could	be	helpful	here.	Check	out	the	appendix	to	see
how!

Helpful	Git	Commands

43

Viewing	Local	Changes
Now	that	you	have	some	files	in	the	staging	area	and	the	working	directory,	let's	explore	how	you	can	compare
different	points	in	your	repository.

Comparing	Changes	within	the	Repository

	git	diff		allows	you	to	see	the	difference	between	any	two	refs	in	the	repository.	The	diagram	below	shows	how	you
can	compare	the	content	of	your	working	area,	staging,	and	HEAD	(or	the	most	recent	commit):

Let's	try	these	commands	on	the	repository:

$	git	diff

$	git	diff	--staged

$	git	diff	HEAD

$	git	diff	--color-words

	git	diff		will	also	allow	you	to	compare	between	branches,	commits,	and	tags	by	simply	typing:

$	git	diff	<REF-1>	<REF-2>

$	git	diff	master	slow-down

$	git	diff	origin/master	master

$	git	diff	2710	b745

Notice	that,	just	like	merges,	diffs	are	directional.	It	is	easiest	to	think	of	it	as	"diff	back	to		<REF-1>		starting	at
	<REF-2>	"	or	"see	what	is	not	in		<REF-1>		but	is	in		<REF-2>	".	The	final	example	shows	how	to	compare	two
commits	based	on	their	commit	hashes.	This	exact	command	will	not	work	for	everyone	since	the	commits	in
your	own	repository	will	have	different	hashes.

There's	a	helpful	alias	for	opening	the	remote	directly	from	your	command	line.	Check	out	the	appendix	if	you'd	like	to
know	more!

Viewing	Local	Changes

44

Viewing	Local	Changes

45

Tags	and	Releases
You	may	want	to	put	tags	or	releases	on	certain	commits	in	your	code's	history	to	mark	specific	states	or	places	in
time.	To	do	this,	you	could	use	Git's	tag	feature,	or	you	could	use	GitHub's	release	feature.

Tags

A	tag	is	a	pointer	that	points	to	a	specific	commit.	Unlike	commits,	tags	are	not	immutable.	They	can	be	moved	and
changed.	Let's	practice	a	bit	with	tags.

Tags	can	be	created	locally	with	Git,	or	on	GitHub.	When	creating	a	tag	from	the	command	line,	it's	recommended	to
create	an	"annotated"	tag.	The	following	example	creates	an	annotated	tag	with	the		-a		flag,	names	the	tag		v1.0	,
and	connects	it	to	whichever	commit	SHA	is	included.

	git	tag	-a	v1.0	<SHA>	

To	see	all	tags,	type		git	tag	--list	.

Another	caveat	with	tags	is	that	they	are	not	automatically	pushed	up	with	commits.	To	push	tags,	type		git	push	--
tags	.

You	can	also	set	this	as	a	default	with	configs	using		git	config	push.followTags	true		which	will	automatically	push
tags	when	their	associated	commits	are	pushed.	Read	more	about	this	config	setting.

Releases

Releases	are	a	GitHub	feature	that	allow	you	to	add	an	executable	to	the	tag	for	easier	access	by	visitors	who	just
want	to	download	and	install	your	software.	Releases	are	tags,	because	they	point	to	a	specific	commit	and	can	be
named	like	any	other	tag.	However,	releases	can	also	include	attached	binaries.

Add	a	Release	to	GitHub-Games

1.	 On	GitHub,	navigate	to	the	Code	tab	of	the	repository.
2.	 Under	your	repository	name,	click	Releases.
3.	 Click	Draft	a	new	release.
4.	 Type	a	name	for	the	tag.	We	recommend	you	use	semantic	versioning.
5.	 Select	a	branch	that	contains	the	project	you	want	to	release.	Usually,	you'll	want	to	release	against	your	master

branch,	unless	you're	releasing	beta	software.	You	can	also	select	a	recent	commit	by	choosing	the	recent
commits	tab.

6.	 Type	a	title	and	description	that	describes	your	release.
7.	 If	you're	ready	to	publicize	your	release,	click	Publish	release.	Otherwise,	click	Save	draft	to	work	on	it	later.

Notice	that	you	could	drag	and	drop	or	select	files	manually	in	the	binaries	box,	or	select	"This	is	a	pre-release"
to	notify	users	that	it's	not	ready	for	production.

Tags	&	Releases

46

https://git-scm.com/docs/git-config/2.4.1#git-config-pushfollowTags

Discussion	Guide:	Team	Workflows	and	Branching
Strategies
Now	is	a	good	time	to	discuss	workflows	-	what	works	for	you	and	your	team,	what	might	work,	and	what	you've	been
doing	in	the	past.	Here	are	some	topics	you	will	want	to	discuss	with	your	team	as	you	establish	your	ideal	process.
Have	a	conversation	either	synchronously	or	in	issues	in	the	class	repository	about	different	workflows.

1.	 Which	branching	strategy	will	we	use?
2.	 Which	branch	will	serve	as	our	"master"	or	deployed	code?
3.	 How	will	you	protect	your	code?
4.	 Will	we	use	naming	conventions	for	our	branches?
5.	 How	will	we	use	labels	and	assignees?
6.	 Will	we	use	milestones?
7.	 Will	we	have	required	elements	of	Issues	or	Pull	Requests	(e.g.	shipping	checklists)?
8.	 Who	is	expected	to	review	your	work?	Do	you	plan	to	involve	other	teams?
9.	 How	will	we	indicate	sign-off	on	Pull	Requests?
10.	 Who	will	merge	pull	requests?
11.	 How	will	you	teach	your	workflow	to	your	team?	If	it	already	exists,	how	is	it	taught	to	new	hires?
12.	 What	integrations	will	be	used	in	different	stages	of	development?	Will	all	teams	be	using	the	same	tools?
13.	 If	users	have	questions	about	Git,	GitHub,	or	their	workflows,	who	do	they	ask?	How	do	they	know	who	to	ask?

Workflow	Discussion

47

Initializing	a	New	Local	Repository

Let's	create	a	local	repository	that	we	can	use	to	practice	the	next	set	of	commands.

1.	 Navigate	to	the	directory	where	you	will	place	your	practice	repo	(cd	..		to	get	back	to	the	parent	folder).
2.	 Create	a	new	directory	and	initialize	it	as	a	git	repository:		git	init	practice-repo	
3.	 CD	into	your	new	repository:		cd	practice-repo	
4.	 Create	an	empty	new	file	named		README.md	:

Bash:		touch	README.md	
PowerShell:		Out-File	README.md	

5.	 Add	and	commit	the	README.md	file.

Since	we	will	be	using	this	as	our	practice	repository,	we	need	to	generate	some	files	and	commits.	Here	are	some
scripts	to	make	this	easier:

Bash:

for	d	in	{1..6};	do	touch	"file${d}.md";	git	add	"file${d}.md";	git	commit	-m	"adding	file	${d}";	done

PowerShell:

for	($d=1;	$d	-le	6;	$d++)	{	Out-File	file$d.md;	git	add	file$d.md;	git	commit	-m	"adding	file$d.md";	}

You	might	see	a	command	during	this	section,		tree	.git	.	If	you're	on	a	machine	where		tree	.git		doesn't
work	(probably	a	Windows	machine),	try		cmd	//c	tree		instead.

Create	a	Local	Repo

48

Fixing	Commit	Mistakes
In	this	activity,	we	will	begin	to	explore	some	of	the	ways	Git	and	GitHub	can	help	us	shape	our	project	history.

Revising	Your	Last	Commit

	git	commit	--amend		allows	us	to	make	changes	to	the	commit	that	HEAD	is	currently	pointing	to.	Two	of	the	most
common	uses	are:

Re-writing	commit	messages
Adding	files	to	the	commit

Let's	see	this	in	action:

1.	 Create	a	new	file:
Bash:		touch	file7.md	
PowerShell:		Out-File	file7.md	

2.	 When	you	are	adding	files	to	the	previous	commit,	they	should	be	in	the	staging	area.	Move	your	file	to	the
staging	area:		git	add	file7.md	

3.	 	git	commit	--amend	
4.	 The	text	editor	will	open,	allowing	you	to	edit	your	commit	message.

You	can	actually	amend	any	data	stored	by	the	last	commit	such	as	commit	author,	email,	etc.

Fixing	Commit	Mistakes

49

Rewriting	History	with	Git	Reset
When	you	want	to	make	changes	to	commits	further	back	in	history,	you	will	need	to	use	a	more	powerful	command:
	git	reset	.

Understanding	Reset

Sometimes	we	are	working	on	a	branch	and	we	decide	things	aren't	going	quite	like	we	had	planned.	We	want	to
reset	some,	or	even	all,	of	our	files	to	look	like	what	they	were	at	a	different	point	in	history.

Remember,	there	are	three	different	snapshots	of	our	project	at	any	given	time.	The	first	is	the	most	recent	commit
(also	known	as	HEAD).	The	second	is	the	staging	area	(also	called	the	index).	The	third	is	the	working	directory
containing	any	new,	deleted,	or	modified	files.

The		git	reset		command	has	three	modes,	and	they	allow	us	to	change	some	or	all	of	these	three	snapshots.

It	also	helps	to	know	what	branches	technically	are:	each	is	a	pointer,	or	reference,	to	the	latest	commit	in	a	line	of
work.	As	we	add	new	commits,	the	currently	checked-out	branch	"moves	forward,"	so	that	it	always	points	to	the	most
recent	commit.

Reset	Modes

Rewriting	History	with	Git	Reset

50

The	three	modes	for	git	reset	are:		--soft	,		--mixed	,	and		--hard	.	For	these	examples,	assume	that	we	have	a
"clean"	working	directory,	i.e.	there	are	no	uncommited	changes.

	--soft	

	git	reset	--soft	<SHA>		moves	the	current	branch	to	point	at	the		<SHA>	.	However,	the	working	directory	and	staging
area	remain	untouched.	Since	the	snapshot	that	current	branch	points	to	now	differs	from	the	index's	snapshot,	this
command	effectively	stages	all	differences	between	those	snapshots.	This	is	a	good	command	to	use	when	you	have
made	a	large	number	of	small	commits	and	you	would	like	to	regroup	them	into	a	single	commit.

	--mixed	

	git	reset	--mixed	<SHA>		makes	the	current	branch	and	the	staging	area	look	like	the		<SHA>		snapshot.	This	is	the
default	mode:	if	you	don't	include	a	mode	flag,	Git	will	assume	you	want	to	do	a		--mixed		reset.		--mixed		is	useful	if
you	want	to	keep	all	of	your	changes	in	the	working	directory,	but	change	whether	and	how	you	commit	those
changes.

	--hard	

	git	reset	--hard	<SHA>		is	the	most	drastic	option.	With	this,	Git	will	make	all	3	snapshots,	the	current	branch,	the
staging	area,	and	your	working	directory,	look	like	they	did	at		<other-commit>	.	This	can	be	dangerous!	We've
assumed	so	far	that	our	working	directory	is	clean.	If	it	is	not,	and	you	have	uncommitted	changes,		git	reset	--hard	
will	delete	all	of	those	changes.	Even	with	a	clean	working	directory,	use		--hard		only	if	you're	sure	you	want	to
completely	undo	earlier	changes.

Reset	Soft

Rewriting	History	with	Git	Reset

51

Using	the	practice	repository	we	created	earlier,	let's	try	a		reset	--soft	.

1.	 View	the	history	of	our	project:		git	log	--oneline	--decorate	
2.	 Identify	the	current	location	of		HEAD	.
3.	 Go	back	two	commits	in	history:		git	reset	--soft	HEAD~2	
4.	 See	the	tip	of	our	branch	(and		HEAD)	is	now	sitting	two	commits	earlier	than	it	was	before:		git	log	--oneline	--

decorate	

5.	 The	changes	we	made	in	the	last	two	commits	should	be	in	the	staging	area:		git	status	
6.	 All	the	files	still	exist	locally:		ls	
7.	 Let's	remove	the	extra	file	we	created	earlier:		git	rm	--cached	file7.md	
8.	 Now,	we'll	re-commit	these	changes	without	the	extra	file:		git	commit	-m	"re-add	file	5	and	6"	

In	this	example,	the	tilde	tells	git	we	want	to	reset	to	two	commits	before	the	current	location	of		HEAD	.	You	can
also	use	the	first	few	characters	of	the	commit	ID	to	pinpoint	the	location	where	you	would	like	to	reset.

Reset	Mixed

Next	we	will	try	the	default	mode	of	reset,		reset	--mixed	:

1.	 Once	again,	we	will	start	by	viewing	the	history	of	our	project:		git	log	--oneline	
2.	 Go	back	one	commit	in	history:		git	reset	HEAD~	
3.	 See	where	the	tip	of	the	branch	is	pointing:		git	log	--oneline	--decorate	
4.	 The	changes	we	made	in	the	last	commit	have	been	moved	back	to	the	working	directory:		git	status	
5.	 All	the	files	still	exist	locally:		ls	
6.	 Move	the	files	to	the	staging	area	before	we	can	commit	them:		git	add	file5.md	file6.md	
7.	 Re-commit	the	files:		git	commit	-m	"re-add	file	5	and	6"	

Notice	that	although	we	have	essentially	made	the	exact	same	commit	(adding	file	5	and	6	together	with	the
same	HEAD	and	commit	message)	we	still	get	a	new	commit	ID.	This	can	help	us	see	why	the	reset	command
should	never	be	used	on	commits	that	have	been	pushed	to	the	remote.

Reset	Hard

Last	but	not	least,	let's	try	a	hard	reset.

1.	 Start	by	viewing	the	history	of	our	project	with:		git	log	--oneline	
2.	 Reset	to	the	point	in	time	where	the	only	file	that	existed	was	the	README.md:		git	reset	--hard	<SHA>	
3.	 See	that	all	of	the	commits	are	gone:		git	log	--oneline	
4.	 Notice	your	working	directory	is	clean:		git	status	
5.	 See	that	the	only	files	in	your	repository	are	the	README.md	and	file7.md:		ls	

Warning:	Remember,		git	reset	--hard		overwrites	your	working	directory,	staging	area,	and	history.	This
means	that	uncommitted	changes	you	have	made	to	your	files	will	be	completely	lost.	Don't	use	it	unless	you
really	want	to	discard	your	changes.	Any	files	that	are	untracked	will	remain	and	be	unchanged.

Does	Gone	Really	Mean	Gone?

The	answer:	It	depends!

$	git	reflog

The	reflog	is	a	record	of	every	place	HEAD	has	been.	In	a	few	minutes	we	will	see	how	the	reflog	can	be	helpful	in
allowing	us	to	restore	previously	committed	changes.	But	first,	we	need	to	be	aware	of	some	of	the	reflog's	limitations:

Rewriting	History	with	Git	Reset

52

The	reflog	is	only	local.	It	is	not	pushed	to	the	remote	and	only	includes	your	local	history.	In	other	words,	you
can't	see	the	reflog	for	someone	else's	commits	and	they	can't	see	yours.
The	reflog	is	a	limited	time	offer.	By	default,	reachable	commits	are	displayed	in	the	reflog	for	90	days,	but
unreachable	commits	(meaning	commits	that	are	not	attached	to	a	branch)	are	only	displayed	for	30	days.

Sometimes,	you'll	want	to	save	your	work	in	a	commit	without	having	to	think	of	a	commit	message,	or	before
you're	ready	to	organize	your	changes.	If	that's	the	case,	you	can	create	aliases	to	create	"save	points".	See
the	appendix	with	aliases	to	learn	how!

Rewriting	History	with	Git	Reset

53

Getting	it	Back:		git	cherry-pick	
We	just	learned	how	reflog	can	help	us	find	local	changes	that	have	been	discarded.	So	what	if:

You	Just	Want	That	One	Commit

Cherry	picking	allows	you	to	pick	up	a	commit	from	your	reflog	or	another	branch	of	your	project	and	move	it	to	your
current	branch.	Right	now,	your	file	directory	and	log	should	look	like	this:

$	ls

README.md

$	git	log	--oneline

84nqdkq	initializing	repo	with	README

Let's	cherry	pick	the	commit	where	we	added	file	4:

1.	 Find	the	commit	ID	where	you	added	file4.md:		git	reflog	
2.	 Cherry-pick	that	commit:		git	cherry-pick	<SHA>	

Now	when	you	view	your	directory	and	log,	you	should	see:

$	ls

file4.md

README.md

$	git	log	--oneline

eanu482	adding	file	4

84nqdkq	initializing	repo	with	README

Is	the	commit	ID	the	same	as	the	one	you	used	in	the	cherry	pick	command?	Why	or	why	not?

Remember,	when	using	any	commands	that	change	history,	it's	important	to	make	these	changes	before
pushing	to	GitHub.	When	you	change	a	commit	ID	that	has	been	pushed	to	the	remote,	you	risk	creating
problems	for	your	collaborators.	{:	.warning}

Oops,	I	Didn't	Mean	to	Reset

Sometimes,	you		git	reset	--hard		a	little	further	than	intended	and	want	to	restore	that	work.	The	good	news	is,	that
	git	reset	--hard		doesn't	just	work	by	going	back	in	time,	it	can	also	go	forward:

1.	 View	the	history	of	everywhere	HEAD	has	pointed:		git	reflog	
2.	 Reset	to	the	point	in	time	where	the	original		file6.md		was	created:		git	reset	--hard	<SHA>	
3.	 See	your	restored	history:		git	log	--oneline	

Take	a	look	at	the	commit	IDs	in		git	log	--oneline		compared	to		git	reflog	.	What	do	you	notice?

Why	didn't	this	command	cause	a	merge	conflict	since	we	had	already	cherry-picked	file	4.	The	reason	is	that
	git	reset	--hard		is	not	trying	to	merge	the	two	histories	together,	it	is	simply	moving	the	branch	to	point	to	a
new	commit.	In	this	case,	this	was	what	we	wanted.	In	other	cases,	this	could	cause	us	to	lose	any	work	we
may	have	done	after	the	original	reset.

See	how	to	avoid	tragedy	with	a	convenient	alias	in	the	appendix.

Cherry	Picking

54

Cherry	Picking

55

Merge	Strategies:	Rebase
In	this	section,	we	will	discuss	another	popular	merge	strategy,	rebasing.

Understanding	Git	Merge	Strategies

Git	uses	three	primary	merge	strategies:

Fast	Forward

A	fast	forward	merge	assumes	that	no	changes	have	been	made	on	the	base	branch	since	the	feature	branch	was
created.	This	means	that	the	branch	pointer	for	base	can	simply	be	"fast	forwarded"	to	point	to	the	same	commit	as
the	feature	branch.

Recursive

A	recursive	merge	means	that	changes	have	been	made	on	both	the	base	branch	and	the	feature	branch	and	git
needs	to	recursively	combine	them.	With	a	recursive	merge,	a	new	"merge	commit"	is	made	to	mark	the	point	in	time
when	the	two	branches	came	together.	This	merge	commit	is	special	because	it	has	more	than	one	parent.

Octopus

A	merge	of	3	or	more	branches	is	an	octopus	merge.	This	will	also	create	a	merge	commit	with	multiple	parents.

About	Git	Rebase

	git	rebase		enables	you	to	modify	your	commit	history	in	a	variety	of	ways.	For	example,	you	can	use	it	to	reorder
commits,	edit	them,	squash	multiple	commits	into	one,	and	much	more.

To	enable	all	of	this,		rebase		comes	in	several	forms.	For	today's	class,	we'll	be	using	interactive	rebase:		git	rebase
--interactive	,	or		git	rebase	-i		for	short.

Typically,	you	would	use		git	rebase	-i		to:

Replay	one	branch	on	top	of	another	branch
Edit	previous	commit	messages
Combine	multiple	commits	into	one
Delete	or	revert	commits	that	are	no	longer	necessary

Creating	a	Linear	History

One	of	the	most	common	uses	of	rebase	is	to	eliminate	recursive	merges	and	create	a	more	linear	history.	In	this
activity,	we	will	learn	how	it	is	done.

Merge	Strategies

56

Set	Up

1.	 Find	the	SHA	of	the	initial	commit:		git	log	--oneline	
2.	 Reset	to	the	SHA	of	the	initial	commit:		git	reset	--hard	SHA	
3.	 Create	a	new	branch	and	check	out	to	it:		git	checkout	-b	rebase-me	
4.	 Cherry-pick	files	4-6	onto	the		rebase-me		branch	using	the	reflog.
5.	 Checkout	to	master:		git	checkout	master	
6.	 Cherry-pick	files	1-3	onto	the		master		branch	using	the	reflog.
7.	 Look	at	your	history:		git	log	--oneline	--graph	--decorate	--all	
8.	 If	you	merged	now,	it	would	be	a	recursive	merge.

Begin	the	Rebase

1.	 Checkout	to	the		rebase-me		branch:		git	checkout	rebase-me	
2.	 Start	the	merge:		git	rebase	-i	master	
3.	 Your	text	editor	will	open,	allowing	you	to	see	the	commits	to	be	rebased.
4.	 Save	and	close	the		rebase-todo	.
5.	 Watch	your	rebase	happen	on	the	command	line.
6.	 Take	another	look	at	your	history:		git	log	--oneline	--graph	--decorate	--all	
7.	 If	you	merged	now,	it	would	be	a	fast-forward	merge.

Finish	the	Merge

1.	 Checkout	to	master,	the	branch	you	will	merge	into:		git	checkout	master	
2.	 Merge	your	changes	in	to	master:		git	merge	rebase-me	

If	you'd	like	some	help	keeping	everything	clean	with	an	alias,	don't	forget	to	check	the	appendix!

Merge	Strategies

57

	Introduction
	Getting Ready for Class
	Getting Started
	GitHub Flow
	Branching with Git
	Local Git Configs
	Working Locally
	Collaborating on Code
	Editing on GitHub
	Merging Pull Requests
	Local History
	Streamline Workflow with Aliases
	Defining a merge conflict
	Resolving merge Conflicts
	Workflow Review
	Protected Branches & CODEOWNERS
	Git Bisect
	Reverting Commits
	Helpful Git Commands
	Viewing Local Changes
	Tags & Releases
	Workflow Discussion
	Create a Local Repo
	Fixing Commit Mistakes
	Rewriting History with Git Reset
	Cherry Picking
	Merge Strategies

